
Eur. Phys. J. B 3, 463–469 (1998) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Springer-Verlag 1998

Transition from small to big charged unilamellar vesicles
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Abstract. The transition from small to big unilamellar vesicles predicted by a Poisson-Boltzmann Cell
Model for the thermodynamics of a dilute phase of unilamellar charged vesicles is characterized. The
radius as a function of experimental parameters is calculated and the coexistence region of small and big
vesicles is identified. We further investigate the physical meaning in terms of simplified models, which
allow for an identification of the role of parameters like the surface charge density or the Debye-length.
Connections to experiments are discussed.

PACS. 05.70.Ce Thermodynamic functions and equations of state – 82.65.Dp Thermodynamics of surfaces
and interfaces – 82.70.Dd Colloids

1 Introduction

In recent years several sophisticated models for the ther-
modynamics of vesicle formation have been proposed in
the literature. The authors of these articles are usually in-
terested in a general description of the thermodynamics
of equilibrium vesicle phases, leading to a detailed mod-
elling of the different contributions to the free energy, like
electrostatics, entropies of chain conformation or undula-
tion modes of the membrane [1–6]. Studies of curvature
expansions for the electrostatics of large vesicles in rela-
tively concentrated regimes have been undertaken using a
cell model [7], as well as calculations under physiological
conditions [8].

Motivated by evidences for the spontaneous formation
of (uni- and multilamellar) vesicles in different experi-
mental systems [9,10], we have studied the effect of ionic
surfactants on the bending properties of an initially non-
ionic membrane. One of the results was the emergence of
a phase of unilamellar vesicles of surprisingly small radius
at high dilution [11]. It was possible to reproduce the ob-
served radius dependence on the experimental parameters
in terms of a Poisson-Boltzmann cell model [12]. We also
reported on an unexpected prediction of the model: for a
specific choice of the experimental parameters it predicts
a coexistence of small and big vesicles. The issue of the
present article is to further investigate this result in terms
of simpler but more intuitive models.

2 Wigner-Seitz cell

The confinement of ions and counter-ions in a Wigner-
Seitz cell is crucial. We define the geometric characteristics
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of a vesicle in a spherically symmetric cell. The discussion
is restricted to unilamellar vesicles of mean radius R and
membrane thickness δ:

R =
Ri +Ro

2
δ = Ro −Ri (1)

where Ri (resp. Ro) is the inner (resp. outer) radius of the
vesicle. In numerical evaluations, we use the experimental
bilayer thickness of 30 Å. The radius of the cell is chosen
such that the volume fraction in the cell equals the global
volume fraction Φ:

Rcell =
3

√
R3
o −R

3
i

Φ
· (2)

This leads to a maximum vesicle size Rmaxo :

Rmaxo =
δ

1− 3
√

1− Φ
· (3)

For a vesicle with Ro > Rmaxo the volume fraction is nec-
essarily below Φ.

Finally, the total electric charge of the cell is zero,
which implies a vanishing electric field at the surface of
the Wigner-Seitz cell. The number of charged surfactant
molecules on the vesicle can be calculated from the mean
size of the vesicles, if one knows the surface charge density.
Throughout this article we will assume a constant surface
charge density σ, independent of the radius of the vesicle.

3 Small-to-big vesicle transition

We start with the theoretical prediction of coexisting small
and big charged vesicles. A detailed description of the
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Fig. 1. Prediction of Poisson-Boltzmann cell model: mean vesi-
cle radius as a function of volume fraction Φ (κ̃ = 2.9 kBT, Γ =
5.0%).

model can be found elsewhere [12]. It is based on the calcu-
lation of the distribution of ions in a Wigner-Seitz cell con-
taining a vesicle of mean radius R using the framework of
the (non-linearized) Poisson-Boltzmann equation. A free
energy Fel of the electrostatic double layer is then associ-
ated with this vesicle. The second contribution is the cur-
vature energy of the symmetric neutral bilayer, estimated
by the Helfrich Hamiltonian and thus introducing the only
free parameter of the model, κ̃ [12,13]. One might argue
that there is a second parameter, the spontaneous curva-
ture c0 with a non-zero value due to the redistribution of
charged amphiphilic molecules between the inner and the
outer monolayer. However, the experimental parameter Γ
– the mass ratio [charged surfactant]/[total surfactant] –
is of the order of a few percent, i.e. the charge density σ
is very small. The steric contribution of this small num-
ber of charged molecules is thus not expected to change
the spontaneous curvature (the electrostatics being taken
care of by the Poisson-Boltzmann Cell Model). The com-
petition between the electrostatic contribution to the free
energy, the curvature energy of the neutral bilayer and
the entropy of mixing of the vesicles (using an ideal gas
approximation) yields a minimum in the total free energy,
at a given radius Ropt.

Finally, the size distribution function N(R)dR – the
number density of vesicles of mean radius between R and
R+ dR – reads:

N(R) = N0 exp

−
(
Fel(R)+8πκ̃

V (R) − µ
)
V (R)

kBT

 (4)

where µ is the Lagrange multiplier associated with conser-
vation of volume of bilayer (i.e. the chemical potential).
Fel(R) is the free energy of the electrostatic double layer of
a vesicle of radius R, V (R) the volume of its bilayer, and κ̃
is the intrinsic bending constant of the symmetric neutral
bilayer. In the harmonic approximation, the bending en-
ergy is 8πκ̃ for a spherical vesicle and is size-independent.
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Fig. 2. Prediction of Poisson-Boltzmann cell model: mean
vesicle radius as a function of the bending constant κ̃ (Φ =
4.5%, Γ = 5.0%).
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Fig. 3. Prediction of Poisson-Boltzmann cell model: mean
vesicle radius as a function of Γ the ratio of the mass of
charged surfactant molecules to the total mass of surfactant
molecules, which is closely related to the surface charge den-
sity σ (Φ = 1.0%, κ̃ = 2.7 kBT )

We have written equation (4) in this form in order to illus-
trate the fact that the maximum of N(R) is close to the

minimum of Fel(R)+8πκ̃
V (R) , deviations towards smaller radii

being due to the entropy of mixing of vesicles. For quali-
tative discussions it is thus sufficient to study the minima

of Fel(R)+8πκ̃
V (R) .

Following our calculations using the Poisson-
Boltzmann equation, a certain number of situations
showing coexisting small and big vesicle phases are found.
In Figures 1–3 we present the theoretical prediction –
deduced from the maxima of N(R) – for the radius as a
function of concentration (at fixed charge density σ and
bending constant κ̃), of the bending constant (at fixed
charge density σ and concentration), and finally of charge
density σ (at fixed concentration and κ̃). Remarkably,
the transition from small to big vesicles is present in the
three cases. We will now turn to the physical origin of
this transition.
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As assumed in our model the very small size of vesicles
(first population) is a compromise between bending en-
ergy and the free energy of the electrostatic double layer.
The existence of a second population implies thus – given
the monotoneously decreasing bending energy contribu-
tion 8πκ̃

V (R) – that there must be a second minimum due

to a plateau or minimum in the electrostatic contribution
itself. As the situation is somewhat obscure due to the
“black box” of the numerical integration of the Poisson-
Boltzmann equation (and of the free energy), we try to
gain physical insight by developing simpler models for the
electrostatic free energy and for an interpretation of the
two-population problem.

3.1 Coulomb model

In a zero-order approach, we estimate the electrostatic
contribution to the free energy Fel by the energy Uel of a
charge Q on a shell of radius R. Any counter-ion contribu-
tion is ignored, and the total charge on the two monolayers
can be estimated by:

Q = 2× 4πR2σ. (5)

We deduce for the electric energy of the vesicle of radiusR:

Uel =
1

4πεε0

Q2

R
(6)

where ε is the dielectric constant of the solvent and ε0 the
vacuum permittivity. The contribution per unit volume is
then:

Uel

Vcell
= 4

σ2ΦR

εε0δ
(7)

where Vcell is the volume of the Wigner-Seitz cell. In this
last equation (7) we have used the conservation of the
bilayer volume fraction (Eq. (2)) simplified for R� δ:

Φ =
3δR2

R3
cell

· (8)

As can be seen from equation (7), the electric energy per
unit volume Uel/Vcell decreases with decreasing vesicle ra-
dius. It thus favors the formation of small vesicles. This
tendency is in competition with the bending energy of the
bilayer per unit volume Ubend/Vcell. The conservation of
volume implies that the bending energy of smaller vesicles
is higher because more vesicles are formed. This leads to
the following dependence on the mean vesicle radius R:

Ubend

Vcell
= 2

Φκ̃

R2δ
· (9)

Minimizing the sum of equations (7, 9) yields the optimum
mean radius:

Ropt ∝ κ̃
1/3
(εε0

σ2

)1/3

· (10)
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Fig. 4. Comparison to experiment: mean vesicle radius R as
a function of relative amount of charge Γ (cf. Fig. 3). Full
line: Coulomb model. Dotted line: Homogeneous counter-ion
distribution.

This scaling law for the optimum mean radius compares
fairly well with the experiment reported in [12], see the
full line in Figure 4. However, there is no prediction for
the evolution of the radius with concentration or salinity.
We have no data to discuss the predicted dependence of
the radius on the bending constant κ̃.

This rather basic model completely neglects the
counter-ions. This has two important consequences. First
of all their entropic contribution is ignored. The spatial
reorganization of the counter-ions as a function of experi-
mental parameters is not described, and subtle effects aris-
ing from this rearrangement – e.g. the effect of screening
by added salt – are excluded. The second consequence is
that the Wigner-Seitz cell itself is not electrically neu-
tral: one of the fundamental concepts of electrostatics is
ignored. Therefore we propose a second model which over-
comes this difficulty.

3.2 Homogeneous counter-ion distribution

In this second simple model we impose electroneutral-
ity for the Wigner-Seitz cells. This is done by homoge-
nously distributing the counter-ions in the cell (except
the membrane), see Figure 5 for a schematic represen-
tation. The number of counter-ions N is equal to the
number of charged surfactant molecules in the membrane
N = Q

e = 4π(R2
i +R2

o)
σ
e , and their number density n is:

n =
N

4π
3 (R3

cell − (R3
o −R

3
i ))
· (11)

For simplicity we suppose a vanishing electric field within
the membrane. Then the number of charged molecules in
the inner (resp. outer) monolayer equals the number of
counter-ions inside (resp. outside) the vesicle (i.e. we as-
sume a conducting bilayer).

Using Gauss’ theorem the electric field (only the ra-
dial component is non-zero for symmetry reasons) can be
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Fig. 5. Schematic representation of the vesicle in its Wigner-
Seitz cell with homogeneous counter-ion distribution.

found anywhere in the cell:

E(r) =
1

4πεε0r2
Qtot(r) (12)

where Qtot(r) is the total charge within a sphere of ra-
dius r (centered at the origin), ε is the dielectric constant
of the solvent and ε0 the vacuum permittivity. For nega-
tive counter-ions the charge obtained inside (r < Ri) the
vesicle is:

Qtot(r) =
4π

3
(−e)n r3. (13)

And outside (Ro < r < Rcell):

Qtot(r) =
4π

3
(−e)n

(
r3 −

(
R3
o −R

3
i

))
+Ne (14)

where the last term (Ne) is due to the ions on the bilayer.
As usual, the electric energy is given by:

Uel =
εε0

2

∫
|E(r)|2d3r. (15)

The integral (15) can be evaluated analytically. For a given
vesicle, the energy reads:

Uel =
e2N2

4πεε0

(
1

1− Φ

)2 [
1

10

R5
cell − (R5

o −R
5
i )

R6
cell

−
1

2

(
1

Rcell
−

1

Ro

)
−

1

2

R2
cell −R

2
o

R3
cell

]
· (16)

As we are interested in what happens at comparatively
large radii (R� δ), i.e. the in the big vesicle population,
we express this last equation (16) in terms of the mean
radius R only, and keep only the lowest-order terms in

δ/R. The result (per unit volume) is of the form:

Uel

Vcell
=

2σ2

εε0

Φ

(1− Φ)2

[
c1(Φ)

(
δ

R

)−2

− c2(Φ)

(
δ

R

)−4/3

+ c3(Φ)

(
δ

R

)−1

+O

(
δ

R

)]
(17)

where

c1(Φ) =
Φ

3

(
1−

Φ

3

)
c2(Φ) =

9

5
3

√
Φ

3
(18)

c3(Φ) = 1 +
Φ

3

are positive prefactors.
Note that the linear term (with prefactor c3 in

Eq. (17)) is simply the transcription of the electrostatic
energy in our first model, equation (7). Not surprisingly,
the experimentally measured evolution of the mean radius
R as a function of relative amount of charge Γ is repro-
duced with about the same accuracy as in the first simple
model, cf. the dotted line in Figure 4. The value of the
only free parameter of the model, the bending constant κ̃
of the neutral bilayer, is 5.6± 0.2 kBT

1.
One can see from the prefactors ci (c1 and c2 tend to

zero as Φ→ 0), that the other two terms are consequences
of the condition of electroneutrality imposed on the finite-
size Wigner-Seitz cell. They translate in terms of energy –
in a mean field approximation – the action of surrounding
vesicles: the confinement of ions in a cell.

A closer look at equation (16) allows for an interpre-
tation of the transition of small to big vesicles. In this
picture, very small vesicles result from the competition
between the linear term in the free energy of the electro-
static double layer and the bending energy, given by equa-
tion (9). However, due to the finite size of the cell, further
contributions appear: the R2 and the – R4/3 term will pro-
duce a secondary minimum, which is this time of purely
electrostatic origin (i.e. totally independent of the bending
elasticity). This is illustrated in Figures 6 and 7, where we
change the volume fraction and plot Uel per unit volume
as a function of mean vesicle radius R (using Eq. (16)).
At small R the electrostatic energy favors small vesicles –
this is mainly due to the linear term – but the secondary
minimum at R = 600 Å (Φ = 5%, Fig. 6) is clearly visible.
Upon increasing the concentration to Φ = 8.3% (Fig. 7),
the Wigner-Seitz cell shrinks, the secondary minimum is
shifted to smaller R, and becomes more pronounced. At
Φ ≈ 8% it becomes comparable to the primary minimum,
and a two population coexistence is predicted2.

1 The deviation from the value obtained with the Poisson-
Boltzmann cell (≈ 3 kBT ) model is due to the neglected en-
tropy of counter-ions.

2 Strictly speaking the entropy of mixing of the vesicles will
always favor the smaller objects, i.e. the secondary minimum
has to be deeper than the first in order to host a population
comparable in number.
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Fig. 6. Dotted line: Electrostatic energy per unit volume as
a function of mean vesicle radius R (calculated for the homo-
geneous counter-ion distribution) for Φ = 5.0%, Γ = 3.55%.
Scale: 5 × 104 J/m3 corresponds to approximately 2 kBT per
ion. Full line: Electrostatic energy plus energy of curvature
(κ̃ = 5.6 kBT ).

Furthermore, the influence of the other experimental
parameters can now be understood. In this model, the
electrostatic energy is simply proportional to σ2, thus
varying σ or κ̃ will change the relative depth of the two
minima: this explains why and how a specific choice of the
experimental parameters leads to the coexistence of small
and big vesicles.

3.3 Debye-Hückel model

The simple model of a homogeneous charge distribution
is unrealistic in the sense that it ignores the fundamen-
tal electrostatic length scale: the thickness of the electro-
static double layer given by the Debye length λD. Indeed,
the electrostatic potential Ψ(r) decays exponentially (or
of Yukawa form in spherical symmetry) inside and outside
the vesicle. In the range R � λD and (Rcell − R) � λD
the electrostatic double layer is not perturbed by the cen-
tre or the surface of the Wigner-Seitz cell. The free energy
of the electrostatic double layer per unit volume of bilayer
is then expected to be independent of vesicle radius R.

In the limit of low surface potentials (Ψ � kBT
e
≈

25 mV at room temperature) the Poisson-Boltzmann
equation can be linearized. The resulting Debye-Hückel
equation

∆Ψ = k2Ψ (19)

where ∆ is the Laplace operator and k = 1
λD

, possesses
an analytical solution in spherical symmetry:

Ψ(r) = A
e−kr

r
+B

ekr

r
(20)

where A and B are constants of integration.
The same analysis as presented in [12] can then be car-

ried through with this analytical solution. This is straight-
forward but tedious, as three regions of space (inside, bi-
layer, and outside the vesicle) have to be connected. We

5 104

5.5 104

6 104

0 100 200 300 400 R

U/V

(J/m 3 )

(Å)

Fig. 7. Electrostatic energy per unit volume as a function
of mean vesicle radius R (calculated for the homogeneous
counter-ion distribution) for Φ = 8.3%, Γ = 3.55%, κ̃ =
5.6 kBT .

therefore propose a version which contains the physics
of the decaying electrostatic double layers, but ignores
the quantitatively unimportant contribution of the elec-
tric field in bilayer. The bilayer of thickness δ is replaced
by an infinitely thin spherical shell with surface charge
density 2σ (without changing Rcell). The form of the po-
tential Ψo outside (R < r < Rcell) the shell is then given
by equation (20). In order to assure a zero electrical field
at the center its form inside the shell (r < R) is given by:

Ψi(r) = C
sinh(k r)

r
· (21)

A, B, and C are determined by the following boundary
conditions:

Ψi(R) = Ψo(R), (22a)

dΨi

dr

∣∣∣∣
r→R−

−
dΨo

dr

∣∣∣∣
r→R+

=
2σ

εε0
, (22b)

dΨo

dr

∣∣∣∣
r→Rcell

= 0. (22c)

The solution of the system is straightforward. According
to [14] the free energy of the electrostatic double layer per
unit of bilayer area is given by:∫ σ

0

Ψ(R, σ′)dσ′. (23)

We deduce the free energy FDH of the electrostatic double
layer per unit volume

FDH

Vcell
=

2σ2Φ

εε0δk
f(kR, kRcell), (24a)

f(kR, kRcell)=

e2kRcell kRcell−1
kRcell+1 +e2kR

e2kRcell kRcell−1
kRcell+1 [coth(kR)+1]+e2kR[coth(kR)−1]

·

(24b)
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reduced units, cf. Eq. (24)) as a function of mean vesicle radius
R (calculated for the Debye-Hückel model) for Φ = 1.0%. The
maximum radius of the Wigner-Seitz cell (Eq. (3)) is 8970 Å.

A typical result for Φ = 1% and λD = 500 Å is plotted
in Figure 8. Note the plateau, and the perturbations in-
duced by the center and the boundary of the Wigner-Seitz
cell. For small radii we find the Coulomb-type dependence,
cf. equation (7) (and also Eq. (17)), which is responsible
for the formation of microvesicles.

As one increases the Debye-length, the electrostatic
double layer is further perturbed by to the cell boundary
and the center of the cell, and the plateau shrinks (see
also Fig. 8 for λD = 1000 Å).

The presence of the plateau expressed the fact that
there is – in this range – no preference for electrostatical
reasons for bigger or smaller vesicles. The competition be-
tween entropy of mixing and bending energy as discussed
by Safran et al. [15] will lead to very big vesicles (and very
polydisperse in size) which exist only at very low concen-
tration. If the first population (located in the Coulomb
part of the free energy at very small radii) can compete
energetically, coexistence of two populations is expected.

4 Discussion

The size of the very small vesicles (R < 100 Å) observed
by SANS has been previously accounted for in terms of
the Poisson-Boltzmann Cell Model. We have now shown
that a pure Coulomb form for the contribution of the elec-
trostatic double layer to the free energy is appropriate for
a description of these small vesicles, at least as far as the
evolution of the radius with charge density is concerned.
However, the transition from small to big unilamellar
vesicles – as predicted by the Poisson-Boltzmann Cell
Model – can not be attributed to the Coulomb term.
We have studied in detail its occurrence as one varies
the experimental parameters. It seems to be related to
weak charges, high bending rigidity or high concentration.
Unfortunately, the numerical integration of the Poisson-
Boltzmann equation makes a deeper understanding diffi-
cult.

Therefore a model with a homogeneous distribution of
counter-ions within the Wigner-Seitz cell has been pro-
posed. Here, the leading term at small radii can be easily
identified in the analytical expressions, and the transition
is still observed: this illustrates that it is not a feature of
the nonlinearity of the Poisson-Boltzmann framework it-
self. Moreover, it could be shown that it is a consequence
of the electroneutrality condition imposed on the Wigner-
Seitz cell, i.e. it is a finite-concentration effect. This sim-
plified model with a homogeneous charge distribution can
be thought of as a model with a very big Debye length.
The center and the cell boundary are always “felt” by the
electrostatic double layer. In the more realistic descrip-
tion using the Debye-Hückel equation, a plateau is found,
which will allow for a second population of big vesicles if
the solution is sufficiently dilute and if the intrinsic bend-
ing modulus is not too high.

The models we have presented in this article are appro-
priate for unilamellar vesicles only. In this geometry, the
transition from small to large unilamellar vesicles is inter-
esting, as coexistence has been found e.g. in cat-anionic
systems [16] and in biological model systems [17]. In other
experiments, however, onion like structures (multilamel-
lar vesicles) are often found as one increases the concen-
tration [9,11], although it is not established if it is re-
ally a phase at thermal equilibrium. In a recent article,
Bergmeier et al. [18] report on preparing without shear
a fluid charged lamellar phase which on gently shaking
becomes a viscoelastic onion phase. The input of mechan-
ical energy breaks up the (previously quasi-infinite) pla-
nar bilayers, and – from an electrostatic point of view –
one can speculate on the formation of small vesicles (first
population). These vesicles could then serve as core for
the formation of onions, as every additional layer has the
same energetical cost per unit bilayer volume due to the
free energy plateau (Eq. (24)), at least as long as the in-
terlamellar distance is greater than the Debye-length.

As a last point, we would like to mention that Gradziel-
ski et al. have recently found a cubic phase of vesicles [19]
in a mixture of ionic surfactant and nonionic cosurfac-
tant at high cosurfactant-to-surfactant ratio in an inter-
mediate concentration region: Φ = 0.05−0.15. From Small
Angle Neutron Scattering and freeze fracture experiments
the structural parameters of the phase are determined.
It turns out that the vesicles are in close contact, which
is one of the characteristics of the big vesicle population
predicted here.

Fruitful discussions with L. Belloni, C. Ligoure and G. Porte
are gratefully acknowledged.
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